

MG970 GaAs Hall

MG970 砷化镓霍尔元件

Linear GaAs Hall Element

线性砷化镓霍尔元件

Excellent Thermal Characteristics

卓越的热稳定特性

SSIP-4 Package

超薄型 SIP-4 封装

● 外形尺寸图 Dimensional Drawing (Unit MM)

● 最大额定值 Absolute Maximum Rating

Operating Temperature Range -40°C ~ 125°C

工作温度

Storage Temperature Range -40°C ~ 150°C

存储温度

Maximum Input Voltage V_{cmax} [V] 12V

最大输入电压 **V**max [V]

Copy Right Reserved Version 1.2

● 电气特性 (测量温度 25°C) Electrical Characteristic (RT=25°C)

Table 1. Electrical Characteristics of MG970

表 1. MG970 电气特性

项目	符号	测量条件	最小	标准	最大	单位
Item	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
霍尔电压	V H	B = 50mT, k =6V T _a = RT	78		102	mV
Hall Voltage						
输入电阻	R in	B = 0mT, I_C = 0.1mA T_a = RT	1000	1250	1500	Ω
Input Resistance						
输出电阻	R out	B = 0mT, I _C = 0.1mA 7 _a = RT	1800	2500	3000	Ω
Output Resistance						
非平衡电压	V os	B = 0mT, I _C = 6V 7 _a = RT	-6		+6	mV
Offset Voltage						
输出电压温度系数	α / Ή	$B = 50 \text{mT}, \ \text{k} = 1 \text{mA},$ $T_a = 25^{\circ}\text{C} \sim 125^{\circ}\text{C}$			0.06	%/°C
Temp. Coeffi. of V _H						
输入电阻温度系数	α <i>R</i> in	$B = 0$ mT, $I_C = 0.1$ mA, $T_a = 25$ °C ~ 125°C			0.0	%/°C
Temp. Coeffi. of R in					0.3	
霍尔电压线性度	Δ Κ	B = 0.1 - 0.5T, / c =1mA 7 _a = RT	-1		+1	%
Linearity of V ₁						

Copy Right Reserved Version 1.2

Note:

1.
$$V_{\rm H} = V_{\rm H-M} - V_{\rm os}$$

in which $V_{\rm H-M}$ is the Output Hall Voltage, $V_{\rm H}$ is the Hall Voltage and $V_{\rm os}$ is the offset Voltage

under the identical electrical stimuli.

2.
$$\alpha V_{\rm H} = \frac{1}{v_{\rm H} (T_{a1})} \times \frac{v_{\rm H} (T_{a2}) - v_{\rm H} (T_{a1})}{T_{a2} - T_{a1}} \times 100$$

$$T_{a1} = 25$$
°C, $T_{a2} = 125$ °C

3.
$$\alpha R_{\text{in}} = \frac{1}{R_{\text{in}} (T_{a1})} \times \frac{R_{\text{in}}(T_{a2}) - R_{\text{in}} (T_{a1})}{T_{a2} - T_{a1}} \times 100$$

$$T_{a1} = 25$$
°C, $T_{a2} = 125$ °C

4.
$$\Delta K = \frac{K(B_1) - K(B_2)}{\frac{K(B_1) + K(B_2)}{2}} \times 100$$
 $K = \frac{V_H}{I_c \times B}$

● 特征曲线图 Characteristic Curves

Figure 1.Input resistance R_{in} as a function of ambient temperature T_{a} .

Copy Right Reserved Version 1.2

Figure 2. Hall voltage V_H as a function of magnetic flux density B.

Figure 3. Hall voltage $V_{\rm H}$ as a function of ambient temperature $T_{\rm a}$.

Copy Right Reserved Version 1.2 Matrixopto.Co.,Ltd is the owner of the trademarks used in this document, which has the exclusive right to prevent

Figure 4. Hall voltage $V_{\rm H}$ as a function of electrical stimuli $I_{\rm c}/\ V_{\rm c.}$

Figure 5. Offset voltage V_{os} as a function of electrical stimuli I_c/V_c .

Copy Right Reserved Version 1.2 Matrixopto.Co.,Ltd is the owner of the trademarks used in this document, which has the exclusive right to prevent

● ESD 预防措施

本产品是对ESD(静电放电)敏感的设备。 在以下环境中处理带有ESD警告标记的霍尔元件:

- 不太可能出现静电荷的环境 (例如:相对湿度超过40%RH)。
- 处理器件时佩戴防静电服和腕带
- 对于直接接触器件的容器建议实施ESD防护措施。

● 存储注意事项

- 在开封MBB后,产品应在适当的温度和湿度(5至35°C,40至60%RH)下储存。 强烈建议使用自密封袋,使产品远离氯气和腐蚀性气体。

- 长期储存

产品用MBB密封,带有干燥剂,部分装有湿度指示剂。 在开封MBB后应立即检查湿度指示器。 如果湿度指示器显示内部水分高于50%HR,请联系当地经销商。

-对于超过2年的储存,建议在MBB密封的氮气氛中储存。 大气中的水氧会导致器件引脚氧化,从而导致引脚焊接能力变差。

● 安全注意事项

- -不要通过燃烧,粉碎或化学处理等方式将本产品变成气体,粉末或液体。
- -丢弃本产品时,请遵守法律和公司规定。

Copy Right Reserved

Version 1.2

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise. (Ex; Relative Humidity; over 40%RH).
- Wearing the antistatic suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

Products should be stored at an appropriate temperature and humidity (5 to 35°C, 40 to 60%RH) after
 the unsealing of MBB. Using self-sealer is highly recommended. Keeping products away from chlorine
 and corrosive gas.

- Long-term storage

Products are sealed in MBB with a desiccant and partially a moisture indicator. The moisture indicator should be checked right after the unsealing of MBB. If the moisture indicator reveals the internal moisture is above 50%HR, please contact the local distributor.

For storage longer than 2 years, it is recommended to store in nitrogen atmosphere with MBB sealed.
 Oxygen and H₂O of atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.